Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Neurosci ; 31(1): 101-119, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31437125

RESUMO

Spikelets are small spike-like depolarizations that are found in somatic recordings of many neuron types. Spikelets have been assigned important functions, ranging from neuronal synchronization to the regulation of synaptic plasticity, which are specific to the particular mechanism of spikelet generation. As spikelets reflect spiking activity in neuronal compartments that are electrotonically distinct from the soma, four modes of spikelet generation can be envisaged: (1) dendritic spikes or (2) axonal action potentials occurring in a single cell as well as action potentials transmitted via (3) gap junctions or (4) ephaptic coupling in pairs of neurons. In one of the best studied neuron type, cortical pyramidal neurons, the origins and functions of spikelets are still unresolved; all four potential mechanisms have been proposed, but the experimental evidence remains ambiguous. Here we attempt to reconcile the scattered experimental findings in a coherent theoretical framework. We review in detail the various mechanisms that can give rise to spikelets. For each mechanism, we present the biophysical underpinnings as well as the resulting properties of spikelets and compare these predictions to experimental data from pyramidal neurons. We also discuss the functional implications of each mechanism. On the example of pyramidal neurons, we illustrate that several independent spikelet-generating mechanisms fulfilling vastly different functions might be operating in a single cell.


Assuntos
Potenciais de Ação , Encéfalo/fisiologia , Células Piramidais/fisiologia , Animais , Encéfalo/citologia , Excitabilidade Cortical , Humanos , Potenciais Sinápticos
2.
J Neurophysiol ; 120(4): 1484-1495, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29947587

RESUMO

Spikelets are small spike-like membrane depolarizations measured at the soma whose origin in pyramidal neurons is still unresolved. We investigated the mechanism of spikelet generation using detailed models of pyramidal neurons. We simulated extracellular waveforms associated with action potentials and spikelets and compared these with experimental data obtained by Chorev and Brecht ( J Neurophysiol 108: 1584-1593, 2012) from hippocampal pyramidal neurons in vivo. We considered spikelets originating in the axon of a single cell as well as spikelets generated in two cells coupled with gap junctions. We found that in both cases the experimental data can be explained by an axonal origin of spikelets: in the single-cell case, action potentials are generated in the axon but fail to activate the soma. Such spikelets can be evoked by dendritic input. Alternatively, spikelets resulting from axoaxonal gap junction coupling with a large (greater than several hundred µm) distance between the somata of the coupled cells are also consistent with the data. Our results demonstrate that a cell firing a somatic spikelet generates a detectable extracellular potential that is different from the action potential-correlated extracellular waveform generated by the same cell and recorded at the same location. This, together with the absence of a refractory period between action potentials and spikelets, implies that spikelets and action potentials generated in one cell may easily get misclassified in extracellular recordings as two different cells, albeit they both constitute the output of a single pyramidal neuron. NEW & NOTEWORTHY We addressed the origin of spikelets, using compartmental models of pyramidal neurons. Comparing our simulation results with published extracellular spikelet recordings revealed an axonal origin of spikelets. Our results imply that action potential- and spikelet-associated extracellular waveforms may easily get misclassified as two different cells, albeit they both constitute the output of a single pyramidal cell.


Assuntos
Potenciais de Ação , Axônios/fisiologia , Células Piramidais/fisiologia , Animais , Modelos Neurológicos , Ratos
3.
PLoS Comput Biol ; 13(1): e1005237, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28068338

RESUMO

Spikelets are small spike-like depolarizations that can be measured in somatic intracellular recordings. Their origin in pyramidal neurons remains controversial. To explain spikelet generation, we propose a novel single-cell mechanism: somato-dendritic input generates action potentials at the axon initial segment that may fail to activate the soma and manifest as somatic spikelets. Using mathematical analysis and numerical simulations of compartmental neuron models, we identified four key factors controlling spikelet generation: (1) difference in firing threshold, (2) impedance mismatch, and (3) electrotonic separation between the soma and the axon initial segment, as well as (4) input amplitude. Because spikelets involve forward propagation of action potentials along the axon while they avoid full depolarization of the somato-dendritic compartments, we conjecture that this mode of operation saves energy and regulates dendritic plasticity while still allowing for a read-out of results of neuronal computations.


Assuntos
Potenciais de Ação/fisiologia , Axônios/fisiologia , Modelos Neurológicos , Células Piramidais/fisiologia , Biologia Computacional , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...